This repository has been archived on 2024-03-22. You can view files and clone it, but cannot push or open issues or pull requests.
DX11Starter/RandomPixelShader.hlsl
2022-02-27 14:32:53 -05:00

130 lines
No EOL
4.1 KiB
HLSL

/// BEGIN THIRD PARTY ///
/// SOURCE: https://thebookofshaders.com/edit.php#11/2d-snoise-clear.frag ///
// Some useful functions
float3 mod289(float3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; }
float2 mod289(float2 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; }
float3 permute(float3 x) { return mod289(((x * 34.0) + 1.0) * x); }
//
// Description : GLSL 2D simplex noise function
// Author : Ian McEwan, Ashima Arts
// Maintainer : ijm
// Lastmod : 20110822 (ijm)
// License :
// Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise
//
float snoise(float2 v)
{
// Precompute values for skewed triangular grid
const float4 C = float4(0.211324865405187,
// (3.0-sqrt(3.0))/6.0
0.366025403784439,
// 0.5*(sqrt(3.0)-1.0)
-0.577350269189626,
// -1.0 + 2.0 * C.x
0.024390243902439);
// 1.0 / 41.0
// First corner (x0)
float2 i = floor(v + dot(v, C.yy));
float2 x0 = v - i + dot(i, C.xx);
// Other two corners (x1, x2)
float2 i1 = float2(0, 0);
i1 = (x0.x > x0.y) ? float2(1.0, 0.0) : float2(0.0, 1.0);
float2 x1 = x0.xy + C.xx - i1;
float2 x2 = x0.xy + C.zz;
// Do some permutations to avoid
// truncation effects in permutation
i = mod289(i);
float3 p = permute(
permute(i.y + float3(0.0, i1.y, 1.0))
+ i.x + float3(0.0, i1.x, 1.0));
float3 m = max(0.5 - float3(
dot(x0, x0),
dot(x1, x1),
dot(x2, x2)
), 0.0);
m = m * m;
m = m * m;
// Gradients:
// 41 pts uniformly over a line, mapped onto a diamond
// The ring size 17*17 = 289 is close to a multiple
// of 41 (41*7 = 287)
float3 x = 2.0 * frac(p * C.www) - 1.0;
float3 h = abs(x) - 0.5;
float3 ox = floor(x + 0.5);
float3 a0 = x - ox;
// Normalise gradients implicitly by scaling m
// Approximation of: m *= inversesqrt(a0*a0 + h*h);
m *= 1.79284291400159 - 0.85373472095314 * (a0 * a0 + h * h);
// Compute final noise value at P
float3 g = float3(0, 0, 0);
g.x = a0.x * x0.x + h.x * x0.y;
g.yz = a0.yz * float2(x1.x, x2.x) + h.yz * float2(x1.y, x2.y);
return 130.0 * dot(m, g);
}
/// SOURCE: https://thebookofshaders.com/10/ ///
float random(float2 st)
{
return frac(sin(dot(st.xy,
float2(12.9898, 78.233))) *
43758.5453123);
}
/// END THIRD PARTY ///
cbuffer ExternalData : register(b0)
{
float4 tint;
float noise;
}
// Struct representing the data we expect to receive from earlier pipeline stages
// - Should match the output of our corresponding vertex shader
// - The name of the struct itself is unimportant
// - The variable names don't have to match other shaders (just the semantics)
// - Each variable must have a semantic, which defines its usage
struct VertexToPixel
{
// Data type
// |
// | Name Semantic
// | | |
// v v v
float4 screenPosition : SV_POSITION;
float2 uv : TEXCOORD;
};
// --------------------------------------------------------
// The entry point (main method) for our pixel shader
//
// - Input is the data coming down the pipeline (defined by the struct)
// - Output is a single color (float4)
// - Has a special semantic (SV_TARGET), which means
// "put the output of this into the current render target"
// - Named "main" because that's the default the shader compiler looks for
// --------------------------------------------------------
float4 main(VertexToPixel input) : SV_TARGET
{
// Just return the tint
// - This color (like most values passing through the rasterizer) is
// interpolated for each pixel between the corresponding vertices
// of the triangle we're rendering
return float4(
sin(snoise(input.uv * noise) + tint.r - random(input.uv)) + (tint.r * 0.5),
sin(snoise(input.uv * noise) + tint.g - random(input.uv)) + (tint.g * 0.5),
sin(snoise(input.uv * noise) + tint.b - random(input.uv)) + (tint.b * 0.5),
cos(random(input.screenPosition)));
}