This repository has been archived on 2024-03-22. You can view files and clone it, but cannot push or open issues or pull requests.
DX11Starter/Game.cpp
2022-01-10 23:04:45 -05:00

311 lines
No EOL
13 KiB
C++

#include "Game.h"
#include "Vertex.h"
#include "Input.h"
// Needed for a helper function to read compiled shader files from the hard drive
#pragma comment(lib, "d3dcompiler.lib")
#include <d3dcompiler.h>
// For the DirectX Math library
using namespace DirectX;
// --------------------------------------------------------
// Constructor
//
// DXCore (base class) constructor will set up underlying fields.
// DirectX itself, and our window, are not ready yet!
//
// hInstance - the application's OS-level handle (unique ID)
// --------------------------------------------------------
Game::Game(HINSTANCE hInstance)
: DXCore(
hInstance, // The application's handle
"DirectX Game", // Text for the window's title bar
1280, // Width of the window's client area
720, // Height of the window's client area
true), // Show extra stats (fps) in title bar?
vsync(false)
{
#if defined(DEBUG) || defined(_DEBUG)
// Do we want a console window? Probably only in debug mode
CreateConsoleWindow(500, 120, 32, 120);
printf("Console window created successfully. Feel free to printf() here.\n");
#endif
}
// --------------------------------------------------------
// Destructor - Clean up anything our game has created:
// - Release all DirectX objects created here
// - Delete any objects to prevent memory leaks
// --------------------------------------------------------
Game::~Game()
{
// Note: Since we're using smart pointers (ComPtr),
// we don't need to explicitly clean up those DirectX objects
// - If we weren't using smart pointers, we'd need
// to call Release() on each DirectX object created in Game
}
// --------------------------------------------------------
// Called once per program, after DirectX and the window
// are initialized but before the game loop.
// --------------------------------------------------------
void Game::Init()
{
// Helper methods for loading shaders, creating some basic
// geometry to draw and some simple camera matrices.
// - You'll be expanding and/or replacing these later
LoadShaders();
CreateBasicGeometry();
// Tell the input assembler stage of the pipeline what kind of
// geometric primitives (points, lines or triangles) we want to draw.
// Essentially: "What kind of shape should the GPU draw with our data?"
context->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
}
// --------------------------------------------------------
// Loads shaders from compiled shader object (.cso) files
// and also created the Input Layout that describes our
// vertex data to the rendering pipeline.
// - Input Layout creation is done here because it must
// be verified against vertex shader byte code
// - We'll have that byte code already loaded below
// --------------------------------------------------------
void Game::LoadShaders()
{
// Blob for reading raw data
// - This is a simplified way of handling raw data
ID3DBlob* shaderBlob;
// Read our compiled vertex shader code into a blob
// - Essentially just "open the file and plop its contents here"
D3DReadFileToBlob(
GetFullPathTo_Wide(L"VertexShader.cso").c_str(), // Using a custom helper for file paths
&shaderBlob);
// Create a vertex shader from the information we
// have read into the blob above
// - A blob can give a pointer to its contents, and knows its own size
device->CreateVertexShader(
shaderBlob->GetBufferPointer(), // Get a pointer to the blob's contents
shaderBlob->GetBufferSize(), // How big is that data?
0, // No classes in this shader
vertexShader.GetAddressOf()); // The address of the ID3D11VertexShader*
// Create an input layout that describes the vertex format
// used by the vertex shader we're using
// - This is used by the pipeline to know how to interpret the raw data
// sitting inside a vertex buffer
// - Doing this NOW because it requires a vertex shader's byte code to verify against!
// - Luckily, we already have that loaded (the blob above)
D3D11_INPUT_ELEMENT_DESC inputElements[2] = {};
// Set up the first element - a position, which is 3 float values
inputElements[0].Format = DXGI_FORMAT_R32G32B32_FLOAT; // Most formats are described as color channels; really it just means "Three 32-bit floats"
inputElements[0].SemanticName = "POSITION"; // This is "POSITION" - needs to match the semantics in our vertex shader input!
inputElements[0].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT; // How far into the vertex is this? Assume it's after the previous element
// Set up the second element - a color, which is 4 more float values
inputElements[1].Format = DXGI_FORMAT_R32G32B32A32_FLOAT; // 4x 32-bit floats
inputElements[1].SemanticName = "COLOR"; // Match our vertex shader input!
inputElements[1].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT; // After the previous element
// Create the input layout, verifying our description against actual shader code
device->CreateInputLayout(
inputElements, // An array of descriptions
2, // How many elements in that array
shaderBlob->GetBufferPointer(), // Pointer to the code of a shader that uses this layout
shaderBlob->GetBufferSize(), // Size of the shader code that uses this layout
inputLayout.GetAddressOf()); // Address of the resulting ID3D11InputLayout*
// Read and create the pixel shader
// - Reusing the same blob here, since we're done with the vert shader code
D3DReadFileToBlob(
GetFullPathTo_Wide(L"PixelShader.cso").c_str(), // Using a custom helper for file paths
&shaderBlob);
device->CreatePixelShader(
shaderBlob->GetBufferPointer(),
shaderBlob->GetBufferSize(),
0,
pixelShader.GetAddressOf());
}
// --------------------------------------------------------
// Creates the geometry we're going to draw - a single triangle for now
// --------------------------------------------------------
void Game::CreateBasicGeometry()
{
// Create some temporary variables to represent colors
// - Not necessary, just makes things more readable
XMFLOAT4 red = XMFLOAT4(1.0f, 0.0f, 0.0f, 1.0f);
XMFLOAT4 green = XMFLOAT4(0.0f, 1.0f, 0.0f, 1.0f);
XMFLOAT4 blue = XMFLOAT4(0.0f, 0.0f, 1.0f, 1.0f);
// Set up the vertices of the triangle we would like to draw
// - We're going to copy this array, exactly as it exists in memory
// over to a DirectX-controlled data structure (the vertex buffer)
// - Note: Since we don't have a camera or really any concept of
// a "3d world" yet, we're simply describing positions within the
// bounds of how the rasterizer sees our screen: [-1 to +1] on X and Y
// - This means (0,0) is at the very center of the screen.
// - These are known as "Normalized Device Coordinates" or "Homogeneous
// Screen Coords", which are ways to describe a position without
// knowing the exact size (in pixels) of the image/window/etc.
// - Long story short: Resizing the window also resizes the triangle,
// since we're describing the triangle in terms of the window itself
Vertex vertices[] =
{
{ XMFLOAT3(+0.0f, +0.5f, +0.0f), red },
{ XMFLOAT3(+0.5f, -0.5f, +0.0f), blue },
{ XMFLOAT3(-0.5f, -0.5f, +0.0f), green },
};
// Set up the indices, which tell us which vertices to use and in which order
// - This is somewhat redundant for just 3 vertices (it's a simple example)
// - Indices are technically not required if the vertices are in the buffer
// in the correct order and each one will be used exactly once
// - But just to see how it's done...
unsigned int indices[] = { 0, 1, 2 };
// Create the VERTEX BUFFER description -----------------------------------
// - The description is created on the stack because we only need
// it to create the buffer. The description is then useless.
D3D11_BUFFER_DESC vbd = {};
vbd.Usage = D3D11_USAGE_IMMUTABLE;
vbd.ByteWidth = sizeof(Vertex) * 3; // 3 = number of vertices in the buffer
vbd.BindFlags = D3D11_BIND_VERTEX_BUFFER; // Tells DirectX this is a vertex buffer
vbd.CPUAccessFlags = 0;
vbd.MiscFlags = 0;
vbd.StructureByteStride = 0;
// Create the proper struct to hold the initial vertex data
// - This is how we put the initial data into the buffer
D3D11_SUBRESOURCE_DATA initialVertexData = {};
initialVertexData.pSysMem = vertices;
// Actually create the buffer with the initial data
// - Once we do this, we'll NEVER CHANGE THE BUFFER AGAIN
device->CreateBuffer(&vbd, &initialVertexData, vertexBuffer.GetAddressOf());
// Create the INDEX BUFFER description ------------------------------------
// - The description is created on the stack because we only need
// it to create the buffer. The description is then useless.
D3D11_BUFFER_DESC ibd = {};
ibd.Usage = D3D11_USAGE_IMMUTABLE;
ibd.ByteWidth = sizeof(unsigned int) * 3; // 3 = number of indices in the buffer
ibd.BindFlags = D3D11_BIND_INDEX_BUFFER; // Tells DirectX this is an index buffer
ibd.CPUAccessFlags = 0;
ibd.MiscFlags = 0;
ibd.StructureByteStride = 0;
// Create the proper struct to hold the initial index data
// - This is how we put the initial data into the buffer
D3D11_SUBRESOURCE_DATA initialIndexData = {};
initialIndexData.pSysMem = indices;
// Actually create the buffer with the initial data
// - Once we do this, we'll NEVER CHANGE THE BUFFER AGAIN
device->CreateBuffer(&ibd, &initialIndexData, indexBuffer.GetAddressOf());
}
// --------------------------------------------------------
// Handle resizing DirectX "stuff" to match the new window size.
// For instance, updating our projection matrix's aspect ratio.
// --------------------------------------------------------
void Game::OnResize()
{
// Handle base-level DX resize stuff
DXCore::OnResize();
}
// --------------------------------------------------------
// Update your game here - user input, move objects, AI, etc.
// --------------------------------------------------------
void Game::Update(float deltaTime, float totalTime)
{
// Example input checking: Quit if the escape key is pressed
if (Input::GetInstance().KeyDown(VK_ESCAPE))
Quit();
}
// --------------------------------------------------------
// Clear the screen, redraw everything, present to the user
// --------------------------------------------------------
void Game::Draw(float deltaTime, float totalTime)
{
// Background color (Cornflower Blue in this case) for clearing
const float color[4] = { 0.4f, 0.6f, 0.75f, 0.0f };
// Clear the render target and depth buffer (erases what's on the screen)
// - Do this ONCE PER FRAME
// - At the beginning of Draw (before drawing *anything*)
context->ClearRenderTargetView(backBufferRTV.Get(), color);
context->ClearDepthStencilView(
depthStencilView.Get(),
D3D11_CLEAR_DEPTH | D3D11_CLEAR_STENCIL,
1.0f,
0);
// Set the vertex and pixel shaders to use for the next Draw() command
// - These don't technically need to be set every frame
// - Once you start applying different shaders to different objects,
// you'll need to swap the current shaders before each draw
context->VSSetShader(vertexShader.Get(), 0, 0);
context->PSSetShader(pixelShader.Get(), 0, 0);
// Ensure the pipeline knows how to interpret the data (numbers)
// from the vertex buffer.
// - If all of your 3D models use the exact same vertex layout,
// this could simply be done once in Init()
// - However, this isn't always the case (but might be for this course)
context->IASetInputLayout(inputLayout.Get());
// Set buffers in the input assembler
// - Do this ONCE PER OBJECT you're drawing, since each object might
// have different geometry.
// - for this demo, this step *could* simply be done once during Init(),
// but I'm doing it here because it's often done multiple times per frame
// in a larger application/game
UINT stride = sizeof(Vertex);
UINT offset = 0;
context->IASetVertexBuffers(0, 1, vertexBuffer.GetAddressOf(), &stride, &offset);
context->IASetIndexBuffer(indexBuffer.Get(), DXGI_FORMAT_R32_UINT, 0);
// Finally do the actual drawing
// - Do this ONCE PER OBJECT you intend to draw
// - This will use all of the currently set DirectX "stuff" (shaders, buffers, etc)
// - DrawIndexed() uses the currently set INDEX BUFFER to look up corresponding
// vertices in the currently set VERTEX BUFFER
context->DrawIndexed(
3, // The number of indices to use (we could draw a subset if we wanted)
0, // Offset to the first index we want to use
0); // Offset to add to each index when looking up vertices
// Present the back buffer to the user
// - Puts the final frame we're drawing into the window so the user can see it
// - Do this exactly ONCE PER FRAME (always at the very end of the frame)
swapChain->Present(vsync ? 1 : 0, 0);
// Due to the usage of a more sophisticated swap chain,
// the render target must be re-bound after every call to Present()
context->OMSetRenderTargets(1, backBufferRTV.GetAddressOf(), depthStencilView.Get());
}