#include "Game.h" #include "Vertex.h" #include "Input.h" #include "BufferStructs.h" // Needed for a helper function to read compiled shader files from the hard drive #pragma comment(lib, "d3dcompiler.lib") #include #include // For the DirectX Math library using namespace DirectX; // -------------------------------------------------------- // Constructor // // DXCore (base class) constructor will set up underlying fields. // DirectX itself, and our window, are not ready yet! // // hInstance - the application's OS-level handle (unique ID) // -------------------------------------------------------- Game::Game(HINSTANCE hInstance) : DXCore( hInstance, // The application's handle "DirectX Game", // Text for the window's title bar 1280, // Width of the window's client area 720, // Height of the window's client area true), // Show extra stats (fps) in title bar? vsync(false) { #if defined(DEBUG) || defined(_DEBUG) // Do we want a console window? Probably only in debug mode CreateConsoleWindow(500, 120, 32, 120); printf("Console window created successfully. Feel free to printf() here.\n"); #endif camera = std::make_shared(0.0f, 0.0f, -1.0f, (float)width / height, 70, 0.01f, 1000.0f); } // -------------------------------------------------------- // Destructor - Clean up anything our game has created: // - Release all DirectX objects created here // - Delete any objects to prevent memory leaks // -------------------------------------------------------- Game::~Game() { // Note: Since we're using smart pointers (ComPtr), // we don't need to explicitly clean up those DirectX objects // - If we weren't using smart pointers, we'd need // to call Release() on each DirectX object created in Game } // -------------------------------------------------------- // Called once per program, after DirectX and the window // are initialized but before the game loop. // -------------------------------------------------------- void Game::Init() { // Helper methods for loading shaders, creating some basic // geometry to draw and some simple camera matrices. // - You'll be expanding and/or replacing these later LoadShaders(); CreateBasicGeometry(); // Tell the input assembler stage of the pipeline what kind of // geometric primitives (points, lines or triangles) we want to draw. // Essentially: "What kind of shape should the GPU draw with our data?" context->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); // Get size as the next multiple of 16 (instead of hardcoding a size here!) unsigned int size = sizeof(VertexShaderExternalData); // This will work even if your struct size changes. // Adding 15 ensures either go past next multiple of 16, or if size is already a multiple, we almost get to next multiple. // Integer division tells us how many 16's would fit (w/o remainder). Get back to multiple of 16 with multiplication step. size = (size + 15) / 16 * 16; // Describe constant buffer D3D11_BUFFER_DESC cbDesc = {}; // zero-out cbDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER; cbDesc.ByteWidth = size; // must be multiple of 16 cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; cbDesc.Usage = D3D11_USAGE_DYNAMIC; device->CreateBuffer(&cbDesc, 0, constantBufferVS.GetAddressOf()); } // -------------------------------------------------------- // Loads shaders from compiled shader object (.cso) files // and also created the Input Layout that describes our // vertex data to the rendering pipeline. // - Input Layout creation is done here because it must // be verified against vertex shader byte code // - We'll have that byte code already loaded below // -------------------------------------------------------- void Game::LoadShaders() { // Blob for reading raw data // - This is a simplified way of handling raw data ID3DBlob* shaderBlob; // Read our compiled vertex shader code into a blob // - Essentially just "open the file and plop its contents here" D3DReadFileToBlob( GetFullPathTo_Wide(L"VertexShader.cso").c_str(), // Using a custom helper for file paths &shaderBlob); // Create a vertex shader from the information we // have read into the blob above // - A blob can give a pointer to its contents, and knows its own size device->CreateVertexShader( shaderBlob->GetBufferPointer(), // Get a pointer to the blob's contents shaderBlob->GetBufferSize(), // How big is that data? 0, // No classes in this shader vertexShader.GetAddressOf()); // The address of the ID3D11VertexShader* // Create an input layout that describes the vertex format // used by the vertex shader we're using // - This is used by the pipeline to know how to interpret the raw data // sitting inside a vertex buffer // - Doing this NOW because it requires a vertex shader's byte code to verify against! // - Luckily, we already have that loaded (the blob above) D3D11_INPUT_ELEMENT_DESC inputElements[2] = {}; // Set up the first element - a position, which is 3 float values inputElements[0].Format = DXGI_FORMAT_R32G32B32_FLOAT; // Most formats are described as color channels; really it just means "Three 32-bit floats" inputElements[0].SemanticName = "POSITION"; // This is "POSITION" - needs to match the semantics in our vertex shader input! inputElements[0].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT; // How far into the vertex is this? Assume it's after the previous element // Set up the second element - a color, which is 4 more float values inputElements[1].Format = DXGI_FORMAT_R32G32B32A32_FLOAT; // 4x 32-bit floats inputElements[1].SemanticName = "COLOR"; // Match our vertex shader input! inputElements[1].AlignedByteOffset = D3D11_APPEND_ALIGNED_ELEMENT; // After the previous element // Create the input layout, verifying our description against actual shader code device->CreateInputLayout( inputElements, // An array of descriptions 2, // How many elements in that array shaderBlob->GetBufferPointer(), // Pointer to the code of a shader that uses this layout shaderBlob->GetBufferSize(), // Size of the shader code that uses this layout inputLayout.GetAddressOf()); // Address of the resulting ID3D11InputLayout* // Read and create the pixel shader // - Reusing the same blob here, since we're done with the vert shader code D3DReadFileToBlob( GetFullPathTo_Wide(L"PixelShader.cso").c_str(), // Using a custom helper for file paths &shaderBlob); device->CreatePixelShader( shaderBlob->GetBufferPointer(), shaderBlob->GetBufferSize(), 0, pixelShader.GetAddressOf()); } // -------------------------------------------------------- // Creates the geometry we're going to draw - a single triangle for now // -------------------------------------------------------- void Game::CreateBasicGeometry() { // Create some temporary variables to represent colors // - Not necessary, just makes things more readable XMFLOAT4 red = XMFLOAT4(1.0f, 0.0f, 0.0f, 1.0f); XMFLOAT4 green = XMFLOAT4(0.0f, 1.0f, 0.0f, 1.0f); XMFLOAT4 blue = XMFLOAT4(0.0f, 0.0f, 1.0f, 1.0f); XMFLOAT4 black = XMFLOAT4(0.0f, 0.0f, 0.0f, 1.0f); XMFLOAT4 white = XMFLOAT4(1.0f, 1.0f, 1.0f, 1.0f); Vertex verts1[] = { { XMFLOAT3(+0.50f, +0.75f, +0.00f), red }, { XMFLOAT3(+0.75f, +0.25f, +0.00f), blue }, { XMFLOAT3(+0.25f, +0.25f, +0.00f), green }, }; unsigned int ind1[] = { 0, 1, 2 }; Vertex verts2[] = { { XMFLOAT3(-0.75f, +0.50f, +0.00f), red }, { XMFLOAT3(-0.50f, +0.50f, +0.00f), blue }, { XMFLOAT3(-0.50f, +0.20f, +0.00f), red }, { XMFLOAT3(-0.75f, +0.20f, +0.00f), blue }, }; unsigned int ind2[] = { 0, 1, 2, 0, 2, 3 }; Vertex verts3[] = { { XMFLOAT3(+0.00f, +0.30f, +0.00f), white }, { XMFLOAT3(+0.15f, +0.15f, +0.00f), black }, { XMFLOAT3(+0.15f, -0.15f, +0.00f), white }, { XMFLOAT3(+0.00f, -0.30f, +0.00f), black }, { XMFLOAT3(-0.15f, -0.15f, +0.00f), white }, { XMFLOAT3(-0.15f, +0.15f, +0.00f), black }, }; unsigned int ind3[] = { 0,1,5 , 1,2,5 , 2,3,4 , 2,4,5 }; shapes = { std::make_shared(verts1, 03, ind1, 03, device, context), std::make_shared(verts2, 04, ind2, 06, device, context), std::make_shared(verts3, 06, ind3, 12, device, context), }; entities = { std::make_shared(shapes[0]), std::make_shared(shapes[0]), std::make_shared(shapes[0]), std::make_shared(shapes[1]), std::make_shared(shapes[1]), std::make_shared(shapes[1]), std::make_shared(shapes[2]), std::make_shared(shapes[2]), std::make_shared(shapes[2]), }; } // -------------------------------------------------------- // Handle resizing DirectX "stuff" to match the new window size. // For instance, updating our projection matrix's aspect ratio. // -------------------------------------------------------- void Game::OnResize() { // Handle base-level DX resize stuff DXCore::OnResize(); // Ensure camera has its projection matrix updated when window size changes camera->SetAspect((float)width / height); } // -------------------------------------------------------- // Update your game here - user input, move objects, AI, etc. // -------------------------------------------------------- void Game::Update(float deltaTime, float totalTime) { // Example input checking: Quit if the escape key is pressed if (Input::GetInstance().KeyDown(VK_ESCAPE)) Quit(); camera->Update(deltaTime); for (int i = 0; i < entities.size(); ++i) { entities[i]->GetTransform()->SetScale(0.1f * (i + 1), 0.1f * (i + 1), 0.1f * (i + 1)); entities[i]->GetTransform()->SetRotation(0.1f * (i + 1) * sin(totalTime), 0.1f * (i + 1) * sin(totalTime), 0.1f * (i + 1) * sin(totalTime)); // this range uses shapes[0] for testing if (i < 3) { entities[i]->GetTransform()->SetPosition(tan((double)totalTime * ((double)i + (double)1)) * 0.1f, sin(totalTime) * 0.1f, (double)i * 0.1f); } // this range uses shapes[1] for testing else if (i < 6) { entities[i]->GetTransform()->SetPosition(sin((double)totalTime * ((double)i + (double)1)) * 0.1f, cos(totalTime) * 0.1f, (double)i * 0.1f); } // this range uses shapes[2] for testing else { entities[i]->GetTransform()->SetPosition(sin((double)totalTime * ((double)i + (double)1)) * cos(totalTime) * 0.1f, 0, (double)i * 0.1f); } } } // -------------------------------------------------------- // Clear the screen, redraw everything, present to the user // -------------------------------------------------------- void Game::Draw(float deltaTime, float totalTime) { // Background color (Cornflower Blue in this case) for clearing static const float color[4] = { 0.4f, 0.6f, 0.75f, 0.0f }; // Clear the render target and depth buffer (erases what's on the screen) // - Do this ONCE PER FRAME // - At the beginning of Draw (before drawing *anything*) context->ClearRenderTargetView(backBufferRTV.Get(), color); context->ClearDepthStencilView( depthStencilView.Get(), D3D11_CLEAR_DEPTH | D3D11_CLEAR_STENCIL, 1.0f, 0); for (auto entity : entities) { // create constant buffer VertexShaderExternalData vsData; vsData.colorTint = XMFLOAT4(1.0f, 0.5f, 0.5f, 1.0f); vsData.world = entity->GetTransform()->GetWorldMatrix(); vsData.view = camera->GetViewMatrix(); vsData.projection = camera->GetProjectionMatrix(); // copy constant buffer to resource D3D11_MAPPED_SUBRESOURCE mappedBuffer = {}; context->Map(constantBufferVS.Get(), 0, D3D11_MAP_WRITE_DISCARD, 0, &mappedBuffer); memcpy(mappedBuffer.pData, &vsData, sizeof(vsData)); context->Unmap(constantBufferVS.Get(), 0); // bind constant buffer context->VSSetConstantBuffers( 0, // which slot (register) to bind buffer to? 1, // how many are we activating? can do multiple at once? constantBufferVS.GetAddressOf() // Array of buffers (or address of one) ); // Set the vertex and pixel shaders to use for the next Draw() command // - These don't technically need to be set every frame // - Once you start applying different shaders to different objects, // you'll need to swap the current shaders before each draw context->VSSetShader(vertexShader.Get(), 0, 0); context->PSSetShader(pixelShader.Get(), 0, 0); // Ensure the pipeline knows how to interpret the data (numbers) // from the vertex buffer. // - If all of your 3D models use the exact same vertex layout, // this could simply be done once in Init() // - However, this isn't always the case (but might be for this course) context->IASetInputLayout(inputLayout.Get()); entity->GetMesh()->Draw(); } // Present the back buffer to the user // - Puts the final frame we're drawing into the window so the user can see it // - Do this exactly ONCE PER FRAME (always at the very end of the frame) swapChain->Present(vsync ? 1 : 0, 0); // Due to the usage of a more sophisticated swap chain, // the render target must be re-bound after every call to Present() context->OMSetRenderTargets(1, backBufferRTV.GetAddressOf(), depthStencilView.Get()); }