#ifndef __SHADER_INCLUDES__ #define __SHADER_INCLUDES__ // Struct representing the data we expect to receive from earlier pipeline stages // - Should match the output of our corresponding vertex shader // - The name of the struct itself is unimportant // - The variable names don't have to match other shaders (just the semantics) // - Each variable must have a semantic, which defines its usage struct VertexToPixel { // Data type // | // | Name Semantic // | | | // v v v float4 screenPosition : SV_POSITION; float2 uv : TEXCOORD; }; // Struct representing a single vertex worth of data // - This should match the vertex definition in our C++ code // - By "match", I mean the size, order and number of members // - The name of the struct itself is unimportant, but should be descriptive // - Each variable must have a semantic, which defines its usage struct VertexShaderInput { // Data type // | // | Name Semantic // | | | // v v v float3 localPosition : POSITION; float3 normal : NORMAL; float2 uv : UV; }; /// BEGIN THIRD PARTY /// /// SOURCE: https://thebookofshaders.com/edit.php#11/2d-snoise-clear.frag /// // Some useful functions float3 mod289(float3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } float2 mod289(float2 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } float3 permute(float3 x) { return mod289(((x * 34.0) + 1.0) * x); } // // Description : GLSL 2D simplex noise function // Author : Ian McEwan, Ashima Arts // Maintainer : ijm // Lastmod : 20110822 (ijm) // License : // Copyright (C) 2011 Ashima Arts. All rights reserved. // Distributed under the MIT License. See LICENSE file. // https://github.com/ashima/webgl-noise // float snoise(float2 v) { // Precompute values for skewed triangular grid const float4 C = float4(0.211324865405187, // (3.0-sqrt(3.0))/6.0 0.366025403784439, // 0.5*(sqrt(3.0)-1.0) -0.577350269189626, // -1.0 + 2.0 * C.x 0.024390243902439); // 1.0 / 41.0 // First corner (x0) float2 i = floor(v + dot(v, C.yy)); float2 x0 = v - i + dot(i, C.xx); // Other two corners (x1, x2) float2 i1 = float2(0, 0); i1 = (x0.x > x0.y) ? float2(1.0, 0.0) : float2(0.0, 1.0); float2 x1 = x0.xy + C.xx - i1; float2 x2 = x0.xy + C.zz; // Do some permutations to avoid // truncation effects in permutation i = mod289(i); float3 p = permute( permute(i.y + float3(0.0, i1.y, 1.0)) + i.x + float3(0.0, i1.x, 1.0)); float3 m = max(0.5 - float3( dot(x0, x0), dot(x1, x1), dot(x2, x2) ), 0.0); m = m * m; m = m * m; // Gradients: // 41 pts uniformly over a line, mapped onto a diamond // The ring size 17*17 = 289 is close to a multiple // of 41 (41*7 = 287) float3 x = 2.0 * frac(p * C.www) - 1.0; float3 h = abs(x) - 0.5; float3 ox = floor(x + 0.5); float3 a0 = x - ox; // Normalise gradients implicitly by scaling m // Approximation of: m *= inversesqrt(a0*a0 + h*h); m *= 1.79284291400159 - 0.85373472095314 * (a0 * a0 + h * h); // Compute final noise value at P float3 g = float3(0, 0, 0); g.x = a0.x * x0.x + h.x * x0.y; g.yz = a0.yz * float2(x1.x, x2.x) + h.yz * float2(x1.y, x2.y); return 130.0 * dot(m, g); } /// SOURCE: https://thebookofshaders.com/10/ /// float random(float2 st) { return frac(sin(dot(st.xy, float2(12.9898, 78.233))) * 43758.5453123); } /// END THIRD PARTY /// #endif